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I lI 1 fW. .' 'P :,,,.JThis final report'describes research performed during Fiscal Years 1990 and 1991 at
the Naval Aerospace Medical Research Laboratory. One research line involved developing a generic model of
human performance tests, such as those in the Unified Tri-service Cognitive Performance Assessment Battery.
Several performance-test models were developed using the plan of the generic task. A second research line focused
on a risk identification study of 31 Navy and Marine combat occupations. The purpose was to examine whethe"
knowledge of a stiessor's effects on abilities might be used to predict the combat jobs most likely to be affected by
the stressor. The results identified certain perceptual-motor, and cognitive abilities tlat may vary substantially in
importance among the occupations. Examples included far vision, spatial orientation, flexibility of closure, rate
control and several others. Analyses of stressors for their effects on these abilities may suggest ways to optimize the
use of resources by distributing backup personnel, countermeasures, and other risk-mitigating factors among jobs in
part according to relative threat magnitudes. A third line of research focused on the develcpment of a MicroSAINT
model of an aircraft carrier landing. Although this line of research was interrupted a year early, due to reductions in
research funds, a preliminary model was developed and is described in this report. A fourth line of research focused
on issues in laboratory-test design and analysis. Studies in this line included (1) an examination of factors
contributing to the potential sensitivities of tests to the effects of environmental stressors and (2) an examination of
the use of iterated bootstrap resampling in the calculation of Monte Carlo estimates of the precision and significance
levels of psychological tests.
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Opinions, interpretations, conclusions, and recommendations are
those of the author and are not necessarily endorsed by the U.S.
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1. INTRODUCTION

Thir Final Report covers work performed at the Naval Aerospace Medical Research Laboratory during
Fiscal Years 1990 and 1991. The 1990 work included (a) developing models of human performance tests drawn
from the Unified Tri-services Cognitive Assessement Battery and (b) a risk-identification study of 31 naval and
marine combat occupations. The 1991 work included (a) a methodological study of test sensitivity, (b)
development of a MicroSAINT model of an aircraft carrier landing and (c) a Monte Carlo study of bootstrap
data-resampling. The FY 1990 modeling effort is described in detail in Stanny and Shamma (1990), a copy of
which is attached to this Report. The FY 1990 study of combat occupations is described in Section 2 of the text.
The FY 1991 sensitivity study is described in Section 3 of this report. The carrier-landing study is described in
Section 4 of the text. The Monte Carlo study of bootstrap resampling is described in Section 5.

2. RISK ANALYSIS OF 31 NAVAL AND MARINE COMBAT OCCUPATIONS

Resources at hand are never sufficient to ensure that all combat personnel will be protected from all
possible hazards. Thus, strategies must be developed to estimate the proportion of resources that should be
devoted to countermeasures and to allocate those resources as well as possible. A basic problem in the
development of such strategies is to identify those personnel most threatened by each different potential hazard.
The assumption that different stressors will affect different abilities suggests that a taxonomy based on skills and
abilities would be valuable in this regard (Cooper, Schemner, Fleishman, Yarkin-Levin, Harding, & McNelis,
1987).

Given that the impact of a specific stressor can be expressed as a pattern of changes in a set of abilities,
it should be possible to derive the relative impact of a stressor on each of a given set of jobs. The analyses
presented here are based on the assumption that the magnitude of a stressor's threat to performance on task
i increases with the number and importance of the skills affected by the stressor. That is,

1i = fk(ýejlcij), (1)

where ti represt.nts the threat to the ith task, fk is a monotonically it~creasing function that may differ among
stressors, ejk is a dummy variable equal to 1 if stressor k affects skillj and 0 otherwise, and sij is the importance
of the jth skill to task i. i do not mean to imply that Equation I should be regarded as a general model of
stressor effects. It is, however, an assumption that should be consistent with a range of such models.

In this report, I will discuss three exploratory analyses of a data base of Navy and Marine air combat
occupations (Cooper et al., 1987). Each was performed with an eye to determining which skills might be most
informative in predicting differential risks posed by environmental stressors. The first analysis described here
comprised an examination of the variation in the skills' importance ratings across jobs. The second analysis was
performed by identifying clusters of jobs related by similarities in their patterns of skill requirements and then
determining the variables that best distinguished between the job clusters. The intuition motivating this analysis
was that using clusters of similar jobs as units of analysis might yield more stable predictions than those derived
from analyses of individual jobs. In the third analysis, I identified clusters of syills related by their patterns of
association across jobs and then examined the degree to which these skill clusters distinguished between the
groups of jobs previously identified.

Methods

Task analysis data. The data base of occupational task analyses used in the present study was developed
by C, oper et al. (1987). The data base contains task analyses of 31 naval and marine combat jobs. The
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information on each job includes a rating of the importance of each of 44 skills and abilities to the perfornlance
of each job. These ratings were developed through interviews with experienced job incumbents. The rating
scale ranged from one to seven (least to most important). The list of jobs is given in Table I; the list of iKills
for which the jobs were rated is iii Table II.

(U) Table I. Navy and Marine Aviation Occupations in the Data Base. (U)

Aviation Boatswain's Mate Helicopter Crew Chief
Aviation Electrician's Mate Hospital Corpsman
Aviation Structual Mechanic Landing Signal Office.
Aviation Ordnanceman Marine Bulk Fuel Operator
Aviation Organizational Maint. Officer Marine Helicopter Piloi
Aviation Fire Control Technician Marine Harrier Pilot
Aviation Electronics Technician Machinist Mate
Bombadier Navigator Marine Prop Pilot
Catapult & Arresting Gear Officer Navy Helicopter Pilot
Cryptologic Technician Radioman
Data Systems Technician Helicopter Search & Rescue Crew Member
Electrician's Mate Sonar Technician
Electronics Technician Torpedoman's Mate
Electronic Warfare Technician Tactical Pilot
Fire Controlman SEALS
Gunner's Mate

Statistics. Principal Components Analyses (PCAs) were perfo-.ied using BMDP 4M (Factor Analysis;
Dixon, Brown, Engelman, Hill, & Jennrich, 1988). Recall that PCA yields a component for each variable. The
firs, principal component (PC) extracted from the correlation matrix corresponds to the linear combination of
th6 original variables that accounts for the largest proportion of the variance in the data. Subsequent
components are statistically independent and account for smaller and smaller proportions of the variance. The
scree test (the method of rootstaring; Cliff, 1987) was used to identify components that appeared to represent
real phenomena. These PCs were then rotated by the varimax procedure. Varimax rotation produces
components whose squared correlations with the original variables have the largest possible collective variance.
This tends to produce "simple" components, components strongly correlated with a few of the original variables
and weakly correlated with the others. Discriminant analyses (DAs) were performed with BMDP 7M (Dixon
et al., 1988). Details specific to individual analyses are described ii, the next section.

Results and Discussion

Table III contains the mean rated importance of each skill, calculated across jobs, in the Cooper et al
(1987) data base. The entries in Table I are sorted in descending order of werage. rating. One should be
cautious about interpreting these means as general measures of "importance" be( ..,e they are strongly influenced
by the makeup of the specific sample of jobs selected for inclusion in the data base. The foregoing having been
said, the head of the list is dominated by a set of perceptual/cognitive variabPs. The middle of th-. list contains
a number of variables having to do with coordination, dexterity, and spatial orientation. Strength and stamina

1The data base also contains information on substasks of jobs. Only the overall skills-and-abilities ratings
were analyzed in this study.
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(U) Table II. Skills and Abilities Rated for Each Job. (U)

1 Oral comprehension 23 Time sharing
2 Written comprehension 24 Rate control
3 Oral expression 25 Arm-hand steadiness
4 Written expression 26 Manual dexterity
5 Fluency of ideas 27 Finger dexterity
6 Originality 28 Speed of limb movement
7 Memory 29 Static strength
8 Problem sersitivity 30 Dynamic strength
9 Mathematical reasoning 31 Explosive strength

10 Number facility 32 Trunk strength
11 Logical reasoning 33 Muscular flexibility
12 Information ordering 34 Equilibrium
13 Speed of closure 35 Gross body coordinati--)n
14 Flexibility of closure 36 Stamina
15 Spatial orientation 37 Near vision
16 Visualization 38 Far vision
17 Perceptual speed 39 Color vision
18 Control precision 40 Night vision
19 Multi-limb coordination 41 Depth perception
20 Reaction time 42 Glare sensitivity
21 Choice reaction time 43 General hearing
22 Selective attention 44 Sound localization

variables tend to be found in the lower third of the list. Notable exceptions to the preceding generalizations are
math and writing, which are rated as comparatively unimportant. Reading, however, is rated as important.

Table IV contains a list of skills sorted in order of decreasing variability (across jobs) of their importance
ratings. This list is of particular interest because the accuracy of predicting which jobs are likely to be affected
by a stressor should increase with the systematic variance (across jobs) in the importance of the affected skills.
This point can be understood by reference to Equation 1. Examining Equation 1, one can see that, with other
factors (including measurement error) held constant, the spread in threat magnitude across jobs, var(ti), increases
with the job-to-job variance in var(s..), the importance of a threatened skill, As the spread in threat magnitudes
increases, for any reason other than an increase in measurement error, the accurdcy of predicting those jobs for
which the threat exceeds a critical value should also increase.

The most variable skills on the list of Table IV are a set of perceptual, psychomotor, and strength skills.
Of note, most of the cognitive skills fall near the bottom of this list. This suggests that, at least in the present
sample of jobs, it may prove easier to predi,. differential threats to performance from effects of stressors on
perceptual and strength variables than from effects of stressors on cognitive variables.

I searched for clusters of related jobs by performing a PCA of a correlation matrix whose row and
column headings were the 31 combat jobs. Each element, r.., of this matrix was, thus, the correlation between
the 44 skill ratings of jobs i and j. High values of q indicated jobs with similar skill requirements. This
procedure resembles Q-factor analysis, a technique sometimes used in studies of individual differences (Guilford,
1954). Examining Fig 1., one can see that by the time the seventh PC was extracted, the magnitudes of the
eigenvalues had decreased to a value effectively equal to 1,0. This value is 1/31 of the total variance (the 31
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(U) Table III. Mean Skill Ratings Across Jobs. (U)

Skill M Skill M
Selective attention 6.00 Fluenicy of ideas 4.35
Problem sensitivity 5.94 Finger dexterity 4.03
Near vision 5.87 Color vision 3.97
Time sharing 5.74 Far vision 3.97
Written comprehension 5.35 Speed of closure 3.90
Night vision 5.26 Originality 3.90
Memory 5.23 Number facility 3.90
Reaction time 5.00 Muscular flexibility 3.84
Logical reasoning 4.94 Visualization 3.74
Oral expression 4.94 Glare sensitivity 3.71
Information ordering 4.90 Static strength 3.68
Flexibility of closure 4.84 Rate control 3.45
General hearing 4.84 Sound localization 3.42
Control precision 4.74 Trunk strength 3.26
Depth perception 4.74 Gross body coordination 3.26
Oral comprehension 4.68 Arm-hand steadiness 3.26
Perceptual speed 4.61 Speed of limb movement 3.23
Multi-limb coordination 4.58 Written expression 3.19
Choice reaction time 4.58 Dynamic strength 3.00
Manual dexterity 4.55 Stamina 2.52
Spatial orientation 4.52 Mathematical reasoning 2.10
Equilibrium 4.45 Explosive strength 1.94

variables in the analysis Nere standardized so that each had unit variance). Because factors with unit eigenvalues
account for no more variance than one of the original variables, nothing is to be gained by considering factors
beyond the sixth. Indeed, the plot of eigenvalue magnitude verslis eigenvalue number seems to contain a break-
point in the vicinity of factor 3-5, which suggests that, perhaps, only the first four factors are real (Cliff, 1987).

Table V shows the clusters of jobs that loaded on (correlated in excess of 0.5 with) each of the four PCs.
A group of technical jobs are associated with the first 10
PC. An examination of this cluster suggests that the
jobs in it are fairly high in their demands for logical 11
analysis. The second cluster is dominated by pilot
occupations and some closely related jobs. The third
cluster is dominated by mechanical-technical jobs.
The SEALS formed their own fourth cluster. Two
jobs did not load to the criterion 0.5 on any of the
PCs.

I used linear discriminant analysis (DA) to
measure the distances between job clusters in terms 1 3 6 7 9 t1 13 15 17 19 21•93 2 27 2 031

of various combinations of the skill ratings. This Eigenvalue Number

appeared to be the direct approach to identifying
vriables that might discriminate between the Figure 1. Eigenvalues from the principal components
clusters. Furthermore, it was unclear that simply analysis of jobs.
factoring the skills iniercorrelaticn matrix would
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(U) Table IV. Variation in Skill Requirements Across Jobs. (U)

Skill sd Skill sd
Far vision 2.85 Reaction time 1.92
Rate control 2.72 Speed of limb movement 1.90
Stamina 2.66 General hearing 1.82
Glare sensitivity z.49 Choice reaction time 1.74
Trunk strength 2.46 Finger dexterity 1.69
Depth perception 2.46 Flexibility of closure 1.61
Sound localization 2.42 Mathematical reasoning 1.59
Visualization 2.40 Perceptual speed 1.58
Static strength 2.35 Multi-lirrb coordination 1.56
Dynamic strength 2.29 Color vision 1.53
Explosive strength 2.29 Manual dexterity 1.52
Arm-hand steadiness 2.24 Written comprehension 1.33
Speed of closure 2.19 Number facility 1.23
Fluency of ideas 2.12 Memory 1.21
Gross body coordination 2.09 Oral comprehension 1.06
Originality 2.08 Inforriation ordering 1.06
Spatial orientation 2.06 Time sharing 0.98
Equilibrium 2.06 Oral expression 0.95
Muscular flexibility 2.05 Near vision 0.83
Night vision 1.95 Selective attention 0.80
Written expression 1.94 Problem sensitivity 0.80
Control precision 1.93 Logical reasoning 0.72

produce similar results. The predictor variables used in the DA were the job skill-requirement levels. The
grouping variable was job-cluster membership--tie number of the PC with which each job was correlated.
Cluster four of the jobs PCA was not used in the DA because it contained only the SEALS. The two
uncategorized jobs also were not used. Thus, the resulting prediction equations were linear combinations of the
original skill-requirement values that maxiemized the overall Euclidean distance (in within-group o units) between
the means of the groups defined by the PCA.

I added one vari~ble at a time to the prediction equation by forward stepping. A criterion F(2,25)-to-
enter of 9.12 was used to control the entry of variables. This is the Bonferroni-corrected critical value of F that
yields an 'xperimentwise significance level of p _ .05 when 44 such F ratios are available for comparison. (Note
that, because the job clusters were not determined according to a priori criteria, this significance level may not
reflect the actual significance of the DA.) 2 Five skills produced F ratios greater than 9.12. These were far

2An additional problem is posed by the fact that the number of skills (predictors) in the database exceeds
the number of jobs (cases). Hence, the significance of the full-rank discriminant function cannot be calculated.
This makes it difficult to assess the significance of the discriminators because the most compelling way to
establish that one o,' more skills significantly distinguishes among the job clusters would be to establish the
significance of the full-rank prediction equation(s). (See Larzelere and Muliak, 1977, for a discussion of this
issue in the related context of multiple regression). A partial solution is to calculate the significance of prediction
equations containing subsets of prespecified size, 1, of the original in predictor variables. (Unfortunately, in
exploratory analyses one can rarely supply an a priori rationale for setting I to any particular value, with the
possible exception of 1.) For a subset of size I = 1 selected from m candidate predictors, a conservative,
Bonferroni-style significance level can be estimated by determiningp in the usual way and multiplying by in. For
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(U) Table V. Clusters of Occupations obtained by Principal Components Analysis. (U)

Cluster 1 Cluster 2
Aviation Electrician's Mate bombadier Navigator
Aviation Electronics Technician Catapult and Arresting Gear
Aviation Fire Control Technician Officer
Aviation Organizational Maintenance Helicopter Crew Chief

Officer Helicopter Search and Rescue
Cryptologic Technician Crew Member
Data Systems Technician Landing Signal Officer
Electrician's Mate Marine Harrier Pilot
E'zctronic Warfare Technician Marine Helicopter Pilot
Electronics Technician Marine Prop Pilot
Gunner's Mate Navy Helicopter Pilot
Hospital Corpsman Tactical Pilot
Radioman
Sonar Technician

Cluser 3 Cluster 4
Aviation Boatswain's Mate SEALS
Aviation Ordnanceman
Aviation Structural Mechanic
Machinist Mate
Torpedoman's Mate

vision, spatial orientation, arm-hand steadiness, rate control, and glare sensitivity. Far vision yielded the largest
value of F(2,25) = 36.00 and was, thus, entered into the prediction equation. Far vision would seem to
distinguish flight-related jobs from other occupations. Consistent with this observation, when far vision was
entered into the equation, the F ratios for entering spatial orientation, rate control, and glare sensitivity (other
clearly flight-related skills) dropped precipitously, from respectable values of 9.37, 10.06, and 10.68 to 0.08, 0.94,
and 0.17, respectively.3 The drop suggests that the information they contained was redundant to the prediction
equation.

With far vision in the prediction equation, a criterion F(2,24)-to-enter of 9.20 was used to control the
entry of further variables. This is the Bonferroni-corrected critical value of F that yields an experimentwise
significance level of p _ .05 when 43 values of F(2,24) are calculated. The only variable that yielded an F-to-enter
exceeding the criterion was flexibility of closure, a high-level cognitive variable (F(2,24) = 14.07). This was
somewhat higher than the F ratio this variable yielded before far vision was entered in the equation. All other

a subset of size 2 selected from in candidates by forward stepwise selection, the implied number of predictor
equations examined is in x (n - 1) and the Bonferroni correction is p x in x (nz - 1). For I = 3, the implied
number is in x (m - 1) x (mi - 2), and so on. Note that, if /n is large and the predictors are correlated, this
coirection procedure rapidly becomes conservative as I increases.

3The F ratio for entering a variable into the prediction equation was the F from a one-way analysis of
variance calculated using the variable's residuals, which is equivalent to the F prod,.,ed by an analysis of
covariance in which variables already in the prediction equation serve as covariates (Dixon et al., 1988).
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va&iables lad much smaller F-ratios (below 6.0). After flexibility of closure had been entered into the prediction
cquation, the values of F(2,23)-to-enter for the remainitg variables were substantially less than the next criterion
value of 9.28 (3.15 and below).

To further investigate the variables distinguishing the three job groups, DAs were performed for each
of the three possible pairwie contrasts between clusters. A criterion value of F(1,21) = 17.875 was adopted,
which corresponded to the Bonferroni-corrected critical value of F that yields an experimentwise significance level
of p <! .05 when 3 x 4- = 132 F tests with 1 and 121 degrees of freedom are performed. The contrast between
the logic-demanding technical jobs and pilot-like jobs yielded four skills with F ratios exceeding the criterion.
These were far vision, glare sensitivity, and rate control. Spatial orientation was only slightly below criterion,
with an F = 16.42. All of these skills were rated as more important to the pilot-like jobs. The contrast between

pilot, like jobs and mechanicdl-tu,:hnical jobs yielded no variables with F ratios exceeding the criterion. Flexibility
of closure had the highest F ratio, 14.33. This variable was rated as more important for the pilot-like jobs than
for the mechanical-technical jobs. Interestingly, the mechanical-technical jobs were scored more like pilot jobs
than were logical jobs with respect io thme skills that distinguished logical jobs from pilot jobs (except for depth
perception). The contrast between the two technical job clusters also yielded no F ratios exceeding the criterion.
The largest F ratio in this case was associated with mathematical reasoning (F(1,21) = 12.42), which was rated
as more importP .t for the logic-demanding jobs.

(U) Table VI. Clusters of Skills Obtained by Principal Components Analysis (Titles are Component Numbers
in Order of Extraction). (U)

PCI PC2 PC3
Rate control Trunk strength Flexibility of closure
Spatial orientation Dynamic strength Selective attention
Glare sensitivity Muscular flexibility Speed of closure
Far vision Stamina Perceptual speed
Depth perception Gross body coordination Near vision
Night vision Sound localization
Choice reaction time
Visualization

PC4 PC5 PC6
Oral expression Manual dexterity Originality
Oral comprehension Finger dexterity Problem sensitivity
Written expression Static strength Mathematical reasoning
Written comprehension

PC7 PC8 PC9
Time sharing Color vision Arm-hand steadiness
N,'nber fi cility Nighl vision Equilibrium
Wrtten expruss ion Reaction time

PCIO PC11 PC12
Information rcdering Memory Logical reasoning

Multi-limb coordination

A second PCA was carried out to examine clusters among the skills. This PCA yielded 12 PCs with
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cigenvalues greater than one. A skree test disclosed
no obvious breakpoint in the plot of eigenvalue versus 1_-
component number (see Fig, 2). The clusters defined
by the ski'ls' correlations with the 12 PCs (r 10
> 0.5) are listed in Table VI. The first skill cluster
contains several variables that were rated, on average, :1
more important for the pilot-like jobs than, for either
of the technical jobs. The second skill cluster is
dominated by a group of physical strength variables. 4
These skills, on average, were rated somewhat more
important the mechanical-technical jobs than for the
logical-technical jobs, and more important for the __ ___-.-,-.--_-.-_............

logical-technical jobs than for the pilot-like jobs. 4 7 10 13 16 19 22 25 20 31 34 37 40 43

None of these skills discriminated well among the job Eigenvalue Number
clusters in the previous DAs. The third cluster
contains a group of cognitive and sensory variables, Figure 2. Eigenvalues from the principal components
among them flexibility of closure, a potentially analysis of skills,
discriminating variable identified in a previous DA.
The skills in this cluster were, on average, rated as somewhat more important for pilot-like jobs than for the
logical-technical jobs, and more important for the logical-technical jobs than for the mechanical-technical jobs.
The fourth cluster contains oral and written communication variables, none of which discriminated among the
jobs. The fifth cluster contains two dexterity variables and static stre-,gth, which did not produce evidence of
potential discriminating power. The sixth cluster is a set of cognitive variables that somewhat resembles cluster
3. Beyond this point, the clusters become increasingly difficult to interpret, suggesting that they may be largely
noise.

Six parallel discriminant analyses were performed on skill clusters identified by the PCA just described.
The first was performed by forcing the apparently pilot-Pke skills of cluster I of Table VI into the equation,
which yielded an approximate F(10,42) = 5.038. (This F ratio is an approximation to Wilks' X that can be
compared to ordinary F tables.) Had the pilot-like skills been selected by a priori criteria, the test would be
significant at p < .0006, comutrolling, in Bonferroni fashion, for six, simultaneous F tests, A parallel discriminant
analysis performed by forcing the strength-related skills of cluster 2 into the prediction equation yielded an
approximate F(12,40) = 1.32. Even if the strength-related skills of cluster 2 had been selected by a priori
criteria, this test would be nonsignificant. A third discriminant analysis performed by forcing the skills in cluster
3 into the prediction equation yielded an approximate F(10,42) = 3.42. Were the third cluster of skills selected
by a priori criteria, this test would be significant at p = .0138, controlling for six tests. Discriminant analyses
employing skill clusters 4 through 6 yielded F ratios of 3.02 and lower, which would also be nonsignificant.

Conclusions

The most important skills and abilities in the Cooper et al. (1987) data base of naval and marine combat
occupations, as judged by their mean importance ratings, were a set of perceptual and cognitive abilities (see
Table III). Coordination, dexterity, and orientation abilities tended to rated as of intermediate importance.
Strength and stamina variables tended to be rated as of lower importance. The skills and abilities that differed
the most in importance from job to job were a group of perceptual, psychomotor, and strength skills, including
far vision, rate control, stamina, glare sensitivity, and trunk strength.

Three primary cins'f.-.; of combat occupations were tentatively identified in a principal components
analysis (Table IV). The 6rst cluster contained a set of logic-demanding technical jobs. The second contained
pilot-like jobs. The third contained mechanical-technical jobs. The SEALS formed their own cluster. Two jobs
were not assigned to any cluster. An exploratory analysis of the skills distinguishing these clusters suggests that
the best discriminator could be far vision. Spatial orientation, rate control, and glare sensitivity may provide
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lesser quantities of correlated predictive information. Somewhat surprisingly, the second bcst discriminator may
be a cognitive skill, flexibility of closure. Discriminating between the pilot-like jobs and the logical-technical jobs
was much easier than discriminating between the pilot-like jobs and the mechanical-technical jobs, or between
the two clusters of technical jobs. Cognitive skills, as a group, displayed relatively little variation in rated
importance from one job to the next.

Several clusters of skills and abilities were identified by principal components analysis (Table V). The
first cluster was a group of apparently flight-related skills, including far vision, rate control, spatial orientation,
and glare sensitivity. The second cluster contained a set of strength, stamina, and coordination skills, along with
auditory localization. The third cluster of skills contained several perceptual and cognitive abilities, including
flexibility of closure (a potentially discriminating ability) and selective attention (the ability with the highest
overall importance rating). Unsurprisingly, given the preceding analysis, the first and third ability clusters gave
some evidence of distinguishing between the job clusters; the remaining clusters did not.

One should bear in mind that abilities that discriminate between jobs need not be the most important
abilities overall. Conversely, abilities that are important, overall, need not discriminate between jobs. Clearly,
the most useful predictions of differential threat wil) occur in cases where a stressor is found to affect abilities
that are uniformly important in some jobs and uniformly unimportant in others. An ability whose importance
is unevenly distributed in this way is unlikely to be regarded as among the most important overall. In the present
data, cognitive abilities were highly rated, as a group, yet the variability of their ratings across jobs was
comparatively low (compare Tables III and IV). 4 Thus, despite the uniformly high importance attributed to
cognitive abilities, the present data suggest that abilities that were rated as of somewhat lower overall importance
in these jobs might yield the best predictions of differential threats to performance.

3. SENSITIVITY OF TESTS

Discussion

Collins and Cliff (1990), in discussing the psychometric properties of growth measures, argue that the
reliability coefficient, pXX, is an irnadequate measure of the precision of a test designed to assess change. They
assert that the major traditions in psychometrics, classical test theory and item-response theory, have focused on
the measurement of stable individual differences and have largely ignored issues surrounding the measurement
of change. As a consequence, the major traditions have become "inadequate for and largely irrelevant to" the
development of measures of growth (p. 128). Although strongly worded, this charge contains some truth, The
association of pxX with the ordinary-language terms "reliability" and "precision" has caused confusion and has
occasionally ledT5 inappropriate applications. The confusion stems from the idea that the reliability coefficient
is generally applicablh as a measure of the reliabilit) and precision of a test. In fact, however, pXX refers to a
limited form of test reliability--specifically, the reliability with which a test detects stable differences-among scores
from different individuals.

The reliability coefficient is frequently characterized as an index of precision: Kerlinger (1986) refers
to it as the "accuracy or .pirecision of a measuring instrument" (p. 405). Lord and Novick (1.968) call it the
"imprecision and precisior. of tests" (p. 61). Introductory texts almost universally describe pxx in similar terms.
Common sense suggests taat, if the reliability coefficient measures precision, a respectabl-e value of pXX is
necessary for a test to be sensitive to change in a dependent variable. Thus, in discussing threats to statistical
conclusion validity, Cook and Campbell (1979) assert that:

4The degree to which this may have been due to a compression of ratings at the upper end of the importance

scale is an open question that warrants further attention.
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Measures of low riliability (conceptualized either as "stability" or "test-retest") cannot be
depended upon to register true changes. This is because unreliability inflates standard errors
of estimates and these standard errors play a crucial role in inferring differences between
statistics, such as the means of different treatment groups (p. 43).

Similarly, in describing a test battery designed to measure the effects of environmental stressors, the NATO
Aerospace Medical Panel Working Group 12 (1989) concludes that:

Any psychological test must exhibit the properties of [construct] validity, reliability, and
sensitivity. In other words, it must measure what it purports to measure, do so consistently, and
be capable of detecting the effects of the environment or of individual differences in ability ....
High [test-retest] reliability is a necessary, but not sufficient, condition for high validity. In
other words, the target attribute cannot be measured adequately by a test that fails to provide
consistent scores... (p. 6).

The idea that reliability is not sufficient to ensure validity is correct, as is the idea that a degree of "consistency"
is necessary in a good test. However, the concluron that a high reliability coefficient is necessary because
consistent measurement is necessary is correct only when the purpose of testing is to measure individual
differences. This is because a high value of Pxx means only that differences among individuals are large relative
to measurement error: A high value of pxx'-Toes not mean, however, that a test will consistently measure the
effects of change in an experimentally ma'i-ipulated independent variable.

This issue was addressed some years ago in a contentious anu sometimes confusing interchange that
began when Overall and Woodward (1975) offered the "paradoxical" obs -rvation that, when measurement error
is held constant, the statistical power of a repeated measures analysis of change scores is maximized when the
reliability coefficient of the scores is zero. To understand why this is so, recall that pxx is traditionally defined
as the proportion of the variance in a population of test scores attributable to varaiiice in true scores (e.g.,
Gulliksen, 1950). That is:

2 2

p x _ _x -=, ( 1 )
_X (C.` + OE2)

where aj, represents the variance of the true scores, aX2 is the variance of test scores, and oE2 is the variance
of the ni-easurement errors. This definition is based ofnthe assumption that each test score,-Xi, is the sum of
a true score, Ti, and measurement error, E1 (Gulliksen, 1950). The error's are usually assumed to be independent
of the Ti, and-of each other, and to have a mnean of zero. Hence,

UX2 = 0-1`2 + O.2. (2)

Perhaps the most widely used estimate of pXX is the test-retest correlation, rX1 X2' The test-retest correlation
is estimated by obtaining test scores from thi-e same group of individuals on two occasions and calculating the
Pearson product-moment correlation between first and second scores.

Overall and Woodward (1975) considered the case of the t test for repeated (correlated) observations.
When the null hypothesis is that the mean difference between scores obtained on two occasions is zero, the
equation for the correlated t can be written:

d,At-~ (3)
adA-

where d is the mean of the differences and a8- is the sample estimate of the standard error of the differences.

Now, the variance of a set of differences is giVen by
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l d OX1X2 = 2 + OX22 - pXXXl Xa. (4)

In Equation 4, pxx is the ..orrelation between pairs of scores in the two conditions and, hence, is equivalent to
the population value of the test-retest correlation--that is, the reliability coefficient.

Assume, for the moment, that the variances of the measurement errors and true-scores are equal in the
two experimental conditions. If so, then the variation attributable to individual differences in true scores
disappears from the variance of the differences. To do this, set OaX2 in Equation 4 to OT2 + CE2, which it equals
by the definition expressed in Equation 2. This yields:

2 2 2I,_M - X2 = "0+E 2Pxx aT+E

= 2oT.S+_E2(1" Pxr__A)

= 2(a.'. + a 2)(1 - PxX) (5)

Now, solve Equation 1 for a,.,2 in terms of PXX and aE2 . The result is

0"£2 = PXX 7E2 / (1 - PXX) (6)

Finally, replace al£ in Equation 5 with the right-hand side of Equation 6. Simplifying produces the desired
result:

0 X - X2 = 2 {2Pxx 013 / (1 - PXX)I + aE} (1 - PXIX2)

= 2 ([;xx aE2 + (I- Pxx)oE2l / (1- PXX)} (1 - PxX)

= 2[ol 2(Pxx - 1 - PXX) / (1- PXX)l / (1 - PXX)

= 2 0E2. (7)

Recall that the standard error of the differences is the square root of their variance divided by i. Thus, given
the null hypothesis AxI - X2 = 0, the t for correlated observations can be written

d
t = (8)Est,[(28 L,2) / B)1/1]

Equation 8 indicates that the sensitivity of a t test for correlated observations (the magnitude of t)
depends o nl on the difference between the condition means (d), sample size (n), and the magnitude of
measurement error (p 2ý). Neither the variance of the true scores nor the reliability coefficient of the test scores
plays a role in the equation.

According to this analysis, subject-to-subject variation in difference scores is due only to measurement
error. Were this always true, the reliabilities of difference scores would always be zero. This is because
reliability, by the definition expressed in Equation 1, is the ratio of "true" variance to the sum of true and error
variances, and because the "true" variance of difference scores is 0.0 under the model of Equation 7. Indeed.
the reliabilities of empirical difference scores are frequently very low, a fact that has sometimes caused applied
researchers to express concern about the wisdom of employing them in behavioral analyses.

i'leiss (1976) has argued, however, that to assume equal true and error variances in analyses such as the
one just outlined is unrealistic. The reason is that this assumption ignores subject-to-subject variation in
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responding to the independent variable. Fleiss noted, correctly, that scores in a one-way, repeated measures
analysis of variance (ANOVA) frequently contain a third source of variation apart from treatment effects and
measurement error. This variation arises from individual differences in responding to change in the independent
variable and is the source of the subject-by-treatment interaction in a repeated measures ANOVA. The presence
of this variation in empirical data is why the reliability coefficients of difference scores are not always zero: If
a subject-by-treatment interaction exists, the variance of the differences will not be 2oE2 , as Equation 7 asserts.
Instead, the variance of the differences will equal 2(2aS T2 + 2E 2), where 0SxT is the variance attributable to
the subject-by-treatment interaction (Fleiss, 1976; Overall-& Woo-award, 1976,; ao see Winer, 1971, pp. 280-231).
Hence the equation for t when a subject-by-treatment interaction is present might be rewritten:

d
_t = -- (9)

U _st .[ 2(2c sx_ 2 + E 2) /2 )1 /2
(

Fleiss (1976) outlined a repeated measures ANOVA model with a subject-by-treatment interaction and
submitted that, in this model, when individual differences in responding are held constant, power is maximized
not when the reliability coefficient of the scores is 0.0, but when reliability is 1.0. Note that the quantity
2aosqx / (2oSXT 2 + GE ) is the proportion of the variance of the difference scores that can be attributed to the
subj-ect-by-tre-tment interaction. By analogy with the definition expressed in Equation 1, this proportion can be
understood to be the reliability of the difference scores, Pdd (Fleiss, 1976; Overall & Woodward, 1976).

Thus, according to Fleiss's (1976) analysis, when asxT2 is held constant and aE2 is allowed to vary, the
seasitivity of a t or F test calculated on the difference score--will necessarily vary direcIly with the reliability of
the differences. This conclusion was consistent with that of Cleary and Linn (1969) and Suteliffe (1958), who
also varied error variance with true-score variance held constant, and concluded that the power of a significance
test increases with the reliability of the dependent variable. Overall and Woodward (1976) replied to Fleiss's
criticism by noting that the presence or absence of a term for oSx×T2 in the denominator of the t ratio is
irrelevant to the point they had originally made, which was that re-lTability is inversely proportional to the
sensitivity of a t test when measurement error is held constant. Adding a constant value (corresponding to the
true variance of the difference scores) to the denominator of the t ratio does nothing to change this basic
algebraic relation.

A somewhat different result holds for between-subjects experimental designs. Suppose that an
investigator is int,;rested in determining whether an intervention affects true scores. For example, the investigator
may be interested in determining whether a drug affects performance on some test. Assume that one group of
subjects has been administered a placebo and the other has been adminis.ered the drug. The relation between
reliability, error variance, and sensitivity for this contrast between group means is readily shown for the case of
the t test. When the null hypothesis is jil - /p2 = 0, the equation for an independent-samplest test can be written

x1 - x2
_t - , (10)

°Xl - X2

where Ax - x is the sample estimate of the standard error of the difference between X and X2. To keep the

algebra ýtmpTe, assume that the two groups are of equal size and that the true-score and error variances of the
two groups are equal. Given these assumptions, the standard error of the difference can be rewritten as follows:

X - X2 -(aXl 2 I+ X22 ) /-hi1/2

(,i,1 + E + "E 122 + O+ 22) /.L111/2
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= [2(o,_2 + CE2 ) / 11]/2 (11)

Note that, in Equation 11, the "measurement error" obtained by decomposing the within-cell variance
into o,1 and OE2 is not the same as the "experimental error" (_M_.rror) obtained by pooling within-cell variances
in a c5-nventionil, one-way, between-subjects ANOVA (for an example, see Winer, 1971, p. 168). The ANOVA
MIS rror, like the variance in the denominator of the t test for independent samples, is derived from ox . This

quantity, under the traditional assumption of Equation 2, is the sum of 012 and O. 2 .

Replacing oa12 in Equation 11 with the right side of Equation 6 allows us to rewrite the independent-
samples t as follows-:

EDt.{[2 (pxx 0 E / (1O - PXX) + E 2 /n]1/2}

_X1 " X2

Est.{[2_E2 /mo(1 - pXX)]1/ 2}

Est.{[h(1 - Pxx) / 2a_ 2]1 / 2}(2X -.-X2), (12)

where Est. } refers to the sample estimate of the quantity inside the braces.

Equation 12 indicates that the value of' t in the test for independent samples varies directly with the
square loot of 1 - Pxx' Heice, for a constant CE2 , the sensitivity of the t test for independent samples is a
monotonically decrea-g function of test reliabilify. The reduction in sensitivity that accompanies an increase
in Pxx, other variables held constant can be understood if one realizes that an increase in PXX is tantamount
to aiii-increase in o.r2 relative to oE (recall Equation 1). Thus, an increase in o,12 that iT-not offset by a
reduction in OE2 wilfincrease the to[al variance of the observations. An increase in X will, in turn, reduce the
value oft, thereby reducing the sensitivity of the contrast.

Nicewinder and Price (1978) have po'nted out that the conclusion one reaches regarding the effects of
a difference in reliability on statistical power %4ll depend on which variables are held constant when reliability
is varied. If measurement error is held constant, an increase in reliability can only occur if the variance of the
true scores increases, due to the relation expressed in Equation 1. Anl increase in oT,. 2 will tend to reduce the
power of a between-subjects t or F test. This is because, as was discussed previouslyT'both OC

2 and oE2 enter
the error terms of these tests.

If the variance of the true scores is eliminated by calculating difference scores, an increase in o, 2 cannot
affect the power of a repeated measures test calculated using the differences. If, however, subjects vair' in tlhir
responses to the independent variable, the interaction variance, Osaw , will be added to the variance of the
differences. Under this condition, an increase in the reliability of the--ifference scores, Pdd, will reduce power.
In contrast, if the variance of the true scores is held constant, an increase in reliability, can only occur if
measurement error decreases (Equation 1). Because op 2 is always a component of the error terms of F and t
tests, any reduction in measurement error will necessi'ily incrcse statist.cal power. Hence, if CT2 is held
constant, any increase in pXX will increase statistical power.

In a consideration of the results of Overall and Woodward (1975, 1.976) and Nicewinder and Price
(1978), Sutcliffe (1980) argued that these authors had traded on a confusion of the reliability coefficient with the
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"reliability of measurements" and "reliability proper" (p. 509), a point vigoi ously denied by Nicewinder and Price
(1983). In his paper, Sutcliffe concedes that "power and reliability jointly depend on true and error variance"
(p. 510). He concurs with Fleiss (1976), who, like Sutcliff (1958) and Cleary and Linn (1969), concluded that
power increases with reliability when individual differences are held constant and measurement error is varied.
In discussing the result obtained when measurement error is held constant and individual differences are varied,
however, Sutcliffe draws the spectacular conclusion that the inverse relation between power and reliability noted
by Overal and Woodward (1975, 1976) is "spurious" (p. 513) and merely the result of change in "the numerical
value of the [reliability] coefficient" (p. 513, emphasis added). A careful reading of Sutcliffe's (1980) paper
suggests that, in fact, the author understands and concurs with Overall and Woodward's (1975, 1976) conclision.
He does not, however, make this point clear. Indeed, the text of Sutcliffe (1980) is easily misinterprei.ed as
supporting the conclusion that pxx and power are, in general, directly related.

Conclusions

Equations 8 and 12 show that the sensitivity with which a test measures change in true scores is not, in
general, an ircreasing function of PXX' Furthermore, the relation between sensitivity and PXX differs in repeated
measures anc, between-subjects exp~i-riental designs. In a one-way, repeated measures desig~i with measurement
error held constant, the reliability coefficient of the test scores will be unrelated to test sensitivity, provided no
subject-by-treatment interaction exists. If a subjecl.-by-treatment interaction is present, however, differences
between-subjects' scores in some or all of the experimental conditions will have nonzer o reliabilities. The "true"
variance in the difference scores that accounts for this reliability will enter the denominators of t ratios calculated
to test the significance of differences between the condition means. Although variance attributable to individual
differences that remain constant across experimental conditions will not enter main-effects F ratios in
conventional, repeated measures ANOVAs (see, for example, Winer, 1971), variance attributable to a
subject-by-treatment interaction will enter both the numerator and deilominator of such an F ratio and, thus,
reduce statistical power (Winer, 1971).

In a between-subjects design, with measurement error held constant, an increase in Pxx will be
accompanied by a reduction in sensitivity (Equation 12). This is because an increase in Pxx in thea-7dsence of
a reduction in measurement error implies an increase in variance attributable to individuaq-5ifferences (by the
definition expressed in Equation 1). This increase in true-.core variance adds to the within-cell variance that
enters the denominators of t tests (Equation 11), thereby reducing the tests' sensitivities, The increase in within-
cell variance will also depress the F ratio for the corresponding main effect in a between-subjects ANOVA
because the same within-cell variance components enter both the numerator and denominator of theF ratio (see
Winer, 1971).

Even in the case of between-subjects designs, however, knowledge of the reliabilifies of two tests is not,
by itself, helpful in predicting which test is more likely to be sensitive to the effects of an independent variable.
In part, this is because the magnitudes of reliability coefficients depend only on the relative magnitudes of true-
scere and measurement-error variances, whereas the magnitudes of between-subjects t and F tests depend on
the (summed) absolute magnitudes of true and error variances (Nicewinder and Price, 1978). Nicewinder and
Price (1978) have taken this observation to mean that no specifiable relation exists between reliability and
sensitivity. Although this conclusion sounds discouraging, knowing both a test's reliability and the variance of
its scores allows one to directly estimate the test's true and measurement-error variances: By the definition of
Equation 1, a,,2 = PXX(OX2) and OE2 = OX 2 

- OT 2. Thus, given estimates of a test's true and error variances,
which can be -o--tainecfTro55 test-retst dataZone cn use expressions such as Equations 7 and 11 to estimate the
error terms the test would yield in various experimentai designs.

A condition in which sensitivity varies as a direct function of reliability occurs when a test is changed
in a way that affects only its measurement error. For example, the measurement error of a test can sometimes
be reduced by increasing the length of a test. If other factors are held constant, a reduction in measurement
error will simultaneously increase reliability and sensitivity (see Equations 1, 8, & 12). Nicewinder and Price

14



(1983) suggest that this relation may be the source of the erroneous belief that increased reliability is invariably
associated with increased sensitivity. (They also provide a numerical example in which a: increase in test length
yields an increase in reliability accompanied by a reduction in sensitivity.) The existence of this special case,
however, in no way implies that reliability and sensitivity to change in an independent variable will be positively
associated in comparisons of arbitrarily selected tests. The sensitivity of a test to the effects of an independent
variable is ultimately determined by the amount by which the test's scores change, relative to error, in response
to change in an independent variable. The reliability coefficient, however, gives no indication of how much scores
change in response to variation in an independent variable. Therefore, a difference in pxx, by itself, gives no
indication of the relative sensitivities of two tests.

Alternatives exist to the reliability coefficient as a measure of precision and sensitivity. Periaps the
simplest measure of precision is the standard deviation of the scores, oX. A limitation of ax, from the
perspective of traditional test theory, is that it confounds variation due to ii-dividual differences wmTh variation
due to measurement error (see Equation 2). A better candidate might be the variance of the measurement
errors, GE2 (Dudek, 1979). As mentioned previously, OE2 can be estimated from the same test-retest data used
to estimate pXX' When the absolute magnitudes of differences between tile means of experimental conditions
can be expre's'ed in units that are comparable across tests, confidence intervals for the mean (or mean
difference) can be useful measures of the precision and the potential sensitivity of a test. For example, the upper
and lower limits of a 100(1 - a)% confidence interval for the difference calculated from test-retest data can be
used to estimate the smallest changes in true scores that would be significant at a level of a in a within-subjects
experiment with no subjects-by-treatment interaction.

A fundamental limitatiun that aE2 shares with pxx is that neither ouantity reflects the degree to which
a test's scores are likely to change in response to an intEvention: A test that yields precise measurements of
scores that do not change in response to an intervention will be less sensitive than a test that yields only rough
measurements of scores that change substantially in response to the intervention. This means that, if you want
to know which of several tests will most sensitive to the effects of an intervention, there is no substitute for pilot
data--direct measurements of the effects of the intervention made with each test under consideration.

Signal detection theo, y provides several measures that can be used to compare the sensitivities of tests
to the effects of change in an independent variable, The most familiar of these is the distance measure, d', which
is usually calculated as an estimate of (142 - M1) / a, (Green & Swets, 1966; Peterson & Birdsall, 1953). Cohen's
(1977) measure of effect size, d = (j 2 - 141) / a, in which a represents the standard deviation of the population
corresponding to either ji2 or j1, is equivalent to d' when tile populations' standard deviations are equal. The
obvious repeated measures analog of these sensitivity measures is d = (/2 - A,) / 0 X2-X1, in which the
denominator is the standard deviation of a population of differences between paireW o-•servations. A
straightforward generalization of d to ANOVA is the ratio of treatment means to the common standard
deviation, f = cA / a (Cohen, 1977). The f statistic is related (, an index of effect size used in standard
treatments of experimental power (e.g., Winer, 1971), by the relation f = n / n1/ 2 (Cohen, 1977). It is related
to W2, a widely used measure of ANOVA effect size, by the relation f- [W / (1 - w2 )1111 (Keppel, 1991), The
disadvantage of these measures, relative to the reliability coefficient, is that their calculation requires knowledge
of an independent variable's effects on treatment means (to form estimates of A2 - 41 or a,). This may not be
a needlessly onerous requirement for a statistic that would be described as a measure of experimental
"sensitivity."

Some of the persistence of the misunderstanding of the reliability coefficient may be attributable to
differences in the perspectives of experimental and individual-differences researchers. Researchers into individual
differences are accustomed to considering the effects of changes in measurement error on test results under the
P'ssumption that true-score variance remains constant. One must do this, for example, when estimating the
effects of a change in test length. However, individual-differences researchers assuredly do not customarily think
of differences among people as noise to be controlled and minimized. In contrast, experimental researchers
frequently attempt to reduce the "noise" in their data by controlling the subject-to-subject variation in their
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samples. (Recall from the preceding discussion that the "noise" variance in experimental data is frequently the
sum of true-score and measurement-error variances.) This interdisciplinary difference in perspective may account
for Fleiss's (1976) apparent failure to recognize Overall and Woodward's (1975) basic point (which was that the
increase in true-score variance that accompanies an increase in reliability, when measurement error is held
constant, reduces the sensitivities of experiments). A similar difference in perspective may account for Sutcliffe's
(1980) assertion that the conclusions of Overall and Woodward (1975) and Nicewinder and Price (1978) might
be taken to imply that "there may be an advantage in having noisy data" (p. 509). From the perspective of
individual-differences research, a test that yields individual differences that are small, relative to mcasurement
error, is a noisy test. This is true no matter how small measurement error is in absolute terms. From the
perspective of experimental research, however, individual differences are likely to be regarded as noise whenever
they inflate the error term of a significance test.

When individual differences are of interest, magnitudes of reliability coefficients are often measured and
compared to justify the use of a particular test (Weiss and Davison, 1981). Indeed, Weiss and Davison (1981)
refer to the measurement and comparison of reliability coefficients as a "preoccupation in psychometrics"
(p. 633). They note that no other science has developed the concept of the reliability coefficient: all other
disciplines express precision in terms of the probable error in measuring some true value. This meaning of
"precision" is more nearly captured by the standard error of measurement, E', than by the reliability coefficient.
When change caused by variation in an independent variable is of p~anary research interest (and the
measurement of individual differences is of lesser interest), comparing reliability coefficients to justify thje use
of a particular test is inappropriate and potentially misleading. This is because Pxx measures only the magnitude
of the variation attributable to individual differences relative to the total ý'-riation in a data set. Many
experimental studies are less concerned with differences among individuals than with changes within individuals.
Examples include research into the effects of control and display configurations, training regimes, and
environmental stressors, That a test reliably detects differences between individuals does not mean that it will
necessarily perform "reliably" if it is turned to the measurement of within-person change, nor does a low value
of PXX imply that a test will be insensitive to change caused by an experimentally manipulated independent
varia--be.

4. CARRIER LANDING MODEL

The line of research described in this section was interrupted by fiscal events that caused the project to
be cancelled without notice. For that reason, the model is incomplete. The status of the model is described here
at the Army's request. Our objective was to develop a model of cognitive workload in a carrier landing scenario.
The immediate aims of this subproject were (a) to obtain a precise description of the time-course of human
performance in what may be the most difficult aviation-related task and (b) to produce a quantitative description
of moment-by-moment fluctuations in the workload imposed by this task. An ultimate purpose of this work was
to identify variables in the carrier-landing scenario that may prove especially valuable in the development of valid
and efficient designs for laboratory and flight-simulator research into medical issues in aviation performance.

Model Description

The information used to develop the aircraft carrier landing model was gathered via interviews withi
three pilot trainees at Pensacola Naval Air Station; therefore, a few tazks of the model are specific to training
landings in T-2 aircraft. The model's overall network, called ACL2, is composed of 39 tasks and seven
subnetworks. Each subnetwork comprises a set of tasks. The total number of tasks is 88. In Figure 1, a
diagram of the overall network, tasks are represented by circles and subnetworks are represented by rectangles.
Subnetworks of ACL2 in Figure 1 are numbered 22, 24, 28, 29, 30, 32, and 38.
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The first seven tasks are maneuvers completed by the T-2 pilots during training. The subsequent tasks
are generally relevant to all aircraft carrier landings. The landing procedure begins when the pilot flies over the
carrier. When the pilot has done thil,, he or she turns and parallels the ship's course, moving in the opposite
direction, maintaining a speed of 250 knots and an altitude of 800 feet. Task 12 (Watch Leader) pertains to the
training patterns of the T-2 pilots. Upon completing these tasks, the pilot breaks to the left and scans the
horizon. He or she then attains an Angle of Bank (AOB) of 60 degrees at 2 Gs and checks his or her altitude
and vertical slope index. If all is correct, the pilot extends the speed brakes (Task 17). Once the brakes are
extended, the pilot reduces the power to 65%, and begins leveling the aircraft to 180 degrees from the landing
point. Next, the pilot descends to 600 feet and obtains his or her position at 180 degrees from the landing point
(The 180-degree measurement is relative to the direction of the carrier.)

When the pilot is flying at 180 degrees from the landing point, he or she begins "Downwind" procedures
(subnetwork 22). This set of procedures comprises the first subnetwork of the model and consists of seven
tasks. The layout of this subnetwork can be seen in Figure 2. Simultaneously, the pilot begins tasks 22,2 tamrough
22.5. He or she achieves 15 t'nits Angle of Attack (AOA--by varying speed, the critical value of which depends
on aircraft weight, which varies with the amount of fuel remaining). He or she reduces air speed to 165 knots,
prepares to get into the proper position abeam, lowers the flaps, and lowers the hook and the landing gear. This
ends the first subnetwork.

The pilot then completes task 23 by checking altitude, the vertical slope index, and wing tip distance to
confirm that all readings are correct. When these task-, are completed, the pilot performs a landing checklist.
This checklist is the second subnetwork in the model. It comprises eight tasks (See Figure 3). Each checklist
item constitutes a task. The pilot checks the amount of fuel in the aircraft, that the gear is down, that the flaps
are down, that the hook is down, the harness is locked, and that the boards are working. He or she pumps the
brakes and confirms that he or she is maintaining 15 units AOA. This process runs off very quickly. Upon
completing this subnetwork, the pilot should be abeam. If so, the pilot checks to make sure the 15 units AOA
setting is correct and simultaneously trims t? ! plane.

If all readings are correct, the pilot enters the third subnetwork. Subnetwork 28 consists of the pilot's
first radio call to the ship. The pilot must report the following: his or her side number, "gear, flaps" (meaning
that these items have been checked and are down), his or her 15 units AOA at specific knots, his or her name,
and his or her qualification number. Each call is a task, creating a total of seven tasks for this subnetwork (See
Figure 4).

Following following the radio call, the pilot enters the next subnetwork (See Figure 5). This subnetwork
is called 'Instrument Flying' because the pilot performs the tasks almost entirely on instruments. The first three
tasks (29.2, 29.3, and 29.4) of this network are performed simultaneously. The pilot checks that he or she is
maintaining a proper AOA, that his or her altitude is at 600 feet, and that he or she is descending at 22 to 25
degrees AOB. At this point, the pilot begins a left-hand turn, placing him/herself at about 90 degrees from the
landing point. The pilot descends to 450 feet, maintains his or her descent at 22 to 25 degrees AOB, and looks
at the ship in order to correct any over- or under-shoot. In all, 10 tasks comprise this subnetwork.

The pilot then exits this subnetwork and enters another one called 'Outside View' (See Figure 6).
During the set of six tasks that make up subnetwork 30, the pilot flies the airc, aft using the outside view as a
guide during about 70-80% of the flight time. When the pilot switches from instrument flying to the outside
view, he or she should be at approximately 45 degrees from the landing point. The pilot checks and adjusts his
or her AOB and references the "ball" on the carrier, which informs the pilot ifi he is coming in too high or too
low. If the pilot does not see the ball, he or she must exit to task number 8, which entails flying over the carrier.
If the pi!ot sees the ball, he or she decreases altitude to 275 to 300 feet.

At this point the pilot leaves the Outside View subnetwork and begins what the "Start" subnetwork,
which comnprises those Iasks that take place on the final approach to the carrier. The pilot begins with a second

18



3"3

3

-4 R

KLI

Figure 2. Subnetwork 22: Downwind Procedures

19



FUEL 24.1 VD

GEAR (DOWN) 24.2

FLAPS (FULL) 24.3

Pb

BOOKS (DOWN) 24.4 r

I-.

BIAR NE.SS (LOCKED) 24.5

BOARDS 24.6

PIM.P MRAKES 24.7

CHECK AOA 24.8

25

Figure 3. :)ubnetwork 24: Checklist # 1

"20



CALL SIDE WY•WER 28.1 nD

s-

CALL 01AEAM' 28.2

nD

IE

CD

c•,o

CD

CALL "FLAPS"' 28.4

CLLL "ON SPEED__-KOTS" 28.5

CalL NAME 28.6

CALL QtIALIFICA6IION NUMBER 28.7

29

Figure 4. Subnetwork 28: Radio Call #.1
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radio call ta the ship. This call is also represented by a subnetwork. The pilot gives his or her side number,
squadron name, an indication that the ball has been seen, his or her fuel state, and his or her qualification
number. All of these tasks must be completed in order to exit this subnetwork. (See Figure 7).

The pilot then engages in four simultaneous tasks. The pilot must check he or she is maintaining 15
units AOA (task 33), that he or she is descending at 500 feet per minute (task 34), that the ball is lined up (task
35), and that power is set to zero (task 36). Setting the power to zero does not mean the engines are turned
off, but that the pilot is at appropriate throttle for the approach. Immediately following this, the pilot checks
the vertical slope index for the last time.

The final subnetwork (# 38) of the model consists of several critical simultaneous procedures called the
Groove Scan. The pilot repeatedly checks the ball, the AOA, and the line up, until the plane has landed. During
this interval, the LSO informs the pilot by radio as to the accuracy of the approach and corrections that should
be made. If the the pilot fails to respond to art LSO instruction, the LSO waves the pilot off. In that event, the
pilot must exit to the Downwind procedures (subnetwork 22) and attempt another landing from there. (For a
diagram of these procedures, see Figure 8.) If the pilot responds appropriately, he or she exits the subnetwork
and performs the final tasks, which take place on the carrier.

Tasks 40 through 42 consist of touching down on the carrier and immediately and simultaneously
applying full thrust and pulling in the speed brakes. If the hook catches a wire, the pilot can shut down the
aircraft. If the hook does not catch a wire, the pilot must perform a touch-and-go and return to the Downwind
procedures (subnetwork 22) to try again.

5. BOOTSTRAP CONFIDENCE INTERVALS

Efron's bootstrap is a nonparametric technique for estimating variation in a statistic (Efron, 1978, 1982
1988; Efron and Tibshirani, 1991). The procedure involves repeatedly drawing subsamples from an original data
set. The statistic of interest is calculated in each subsample and the frequency distribution of its values is taken
as an approximation to the statistic's actual sampling distribution.

The bootstrap is noted for wide applicability and a remarkable ability to extract information from
samples (Efron, 1982). Several investigators have noted, however, that standard bootstrap confidence intervals
(CIs) for the correlation coefficient yield overly liberal Type I error rates in small samples when a is set to .05
or less (e.g., Efron, 1982; Rasmussen, 1987, 1988; Strube, 1988). This bias may derive from a tendency of the
bootstrap to produce too few subsamples with extreme values of the statistic under examination (Young &
Daniels, 1990). Efron (1988) has observed that, although the bootstrap performs well with a set to .10,
nonparametric bootstrap Cls perform better when "not pushed too far toward extreme coverage probabilities"
(p. 295). In psychology and many other fields, however, it is conventional to set Type I error rates to .05 or less.
Thus, Rasmussen (1987), Strube (1988), and others have advised caution in applying the bootstrap in small
samples.

Bootstrap sampling is performed by randomly drawing observations from an empirical data set.
Drawings are made with replacement and performed in such a way that each of the original observations has
an equal probability of being drawn. The number of observations drawn for each subsample, n, is usually set
equal to the number of observations in the original sample. The number of bootstrap subsamples drawn, N,
varies with the problem. Nonparametric bootstrap CIs are typically based on 500-2000 subsamplcs; Efron (1988)
suggests using a minimum of 1,000 subsamples.

A nonparametric, "percentile-method" bootstrap CI for an arbitrary statistic, 0, is generated by drawing
N bootstrap subsamples, calculating the statistic's sample estimate, 0, in each subsample, finding the 100a/2 and
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100(1 - ci/2) percentiles of the frequency distribution of 0-values thus produced, and taking the interval between
these percentiles as the range of a 100(1 - a)% CI. In this way, the percentile method "automatically" determines
approximate confidence limits associated with a given probability of Type I error. The data are not assumed to
follow any specific probability distribution. The method does, however, depend on the assumption that
distributions of bootstrap subsamples tend to reflect the forms of actual sampling distributions. The results of
Rasmussen (1987, 1988) and Strube (1988) suggest that this assumption may be invalid when ni is small and the
desired a is .05 or less.

Several corrections for the percentile method's bias have been proposed. The bias-corrected percentile
method (Efron, 1982) yields Cis with improved coverage properties. However, the bias-corrected percentile
method reintroduces parametric assumptions. Furthermore, Monte Carlo studies have shown that the corrections
it produces can be insufficient when n_ is small and a is set to .05 or less (Strube, 1988). The accelerated
bias-corrected percentile method (Efron, 1987) can be quite accurate in some situations. This method has been
criticized, however, for depending on an analytic correction factor that can be difficult or impossible to calculate
(Loll & Wu, 1987).

Iterated bootstrapping is a computationally intensive approach to correcting the bootstrap's bias (Beran,
1987; Hall, 1986; Hall & Martin, 1988; Martin, 1990). Like the ordinary percentile method, the iterated
perceivile method sets confidence limits automatically, without parametric assumptions. An iterated bootstrap
95% Cl for the mean can be calculated by drawing N first-order bootstrap subsamples from an empirical sample
and M second-order subsamples from each first-order subsample. A percentile-method CI is derived from each
of the N sets of second-order subsamples, The lower and upper cutoff percentages of the second-order CIs are
adjusted until 95% of the intervals cover the sample mean. The adjusted cutoff percentages are then substituted
for 100a/2 and 100(1 - a/2) in an ordinary percentile-method C1 for 1 calculated from the means of the first-
order bootstrap subsamples.

The Monte Carlo studies described here were performed to examine the Type I error rates of
iterated-bootstrap 95% CIs for the mean in small samples drawn from non-normal populations. A CI for the
mean expresses the precision with which a measurement has been obtained; it also can be used to test hypotheses
about the location of M. For example, a 100(1 - a)% CI for 4 that does not cdver 0 can be used to reject the
null hypothesis that the data were sampled from a population with p = 0 at a significance level of a. Hence,
the results of this study are directly relevant to one-sample hypothesis tests, such as tests of differences between
correlated observations and 1-df orthogonal-polynomial contrasts.

Method

The simulations described here were written in Fortran-77 and run on an Intel 860 reduced instruction
set procesror installed in a desktop PC. Three types of Cls were examined: normal-theory (Student's t),
percentile-method bootstrap, and iterated percentile-method bootstrap. Random samples of data were drawn
from two distributions, one normal and one nen-normal, Normally distributed samples were generated by
drawing random values from a Gaussian distribution with 14 = 0 and a = 1. Non-normal samples were
generated by drawing random values from an exponential distribution with tL = a = 1. Gaussian random
variables were generated by the direct method; exponential random variables were generated by the inverse
method (Zelen & Severo, 1970).

Normal-theory and percentile-method Cis were compared in normally and exponentially distributed
samples with sizes of 5, 10, 20, 40, 80, and 160. Iterated-bootstrap Cis were studied in normally and
exponentially distributed samples with sizes of 5, 10, 15, and 20. One thousand confidence intervals were created
in each experimental condition defined by a combination of CI type, probability distribution, and sample size.
The observed Type I error rate in each experimental condition was calculated a,: the proportion of Cis that failed
to cover p4.
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A normal-theory CI was calculated as 7 ± . - 7/2) ), where . /12- ) is the critical value of
Student's t corresponding to 1 - a/2 = .975, with n -Y1 degrees of freedom, and s- was the sample estimate of
the standard error of the mean. A percentile-method CI was calculated by dFawing N = 1,000 bootstrap
subsamples from an empirical sample, calculating the mean of each subsample, and taking the 2.5th and 97.5th
percentiles of the subsample means as the 100a/ 2% and 100(1 - a/2)% limits of the 95% CI, respectively.

An iterated-bootstrap CI was calculated by drawing N = 1,000 first-order bootstrap subsamples from
an empirical sample, drawing M = 1,000 second-order bootstrap samples from each first-order sample, and
finding the means of the second-order samples. The N cumulative frequency distributions of second-order
subsample means were searched for the percentile that exceeded the sample mlean in 2.5% of the distributions.
A similar search was performed for the percentile that exceeded the sample mean in 97.5% of the distributions.
An ordinary percentile-method CI was then constructed from the means of the first-order subsamples, with
100a/2% and 100(1 - a/2)% replaced by the percentages found in the search through the second-order means.

Results and Discussion

Figure 1 illustrates the perfor.,,tice of the
normal-theory and percentile-method CIs in nk rmally 0.2--
distributed samples. The Type I error rates of the
normal-theory intervals are near the nominal a level 4- 0.20 -

of .05 at all sample sizes. In contrast, the Type I a
error rates of the percentile-method intervals are 0.15 N w R A
substantially higher than .05 in small samples, l, enIc M Ihad

averaging about .153 when n = 5, and do not 01to
approach .05 until n1 reaches about 40. In samples of 0 '050 ,
about 40 or more observations, the percentile-method I Th ry
bootstrap works quite well, Indeed, the average Cl 0.00-. - -. 1 E
limits, not shown, are near those given by normal- 0 20 40 60 80 100 120 1400 180

distribution theory. In small samples, however, the Samnple Size

percentile method yields limits that tend to be
narrower than those given by theory, a result that
accounts for the disproportionate numbers of Type I Figure 1. Empirical Type I error rate as a function of
errors, sample size for percentile-method bootstrap and normal-

theory confidence intervals. The nominal protection
Figure 2 illustrates the performance of the level was 95%. Samples were drawn from a Gaussian

normal and percentile-method bootstrap intervals in distribution.
samples drawn from an exponential distribution.
Both types of interval produce Type I errors at rates much larger than .05 in samples smaller than 20.
Interestingly, the parametric intervals are less biased than the nonparametric intervals. Neither interval, however,
performs especially well in the sample sizes examined here.

Figure 3 illustrates the performance of the iterated-bootstrap intervals in samples drawn from normal
and exponential distributions. In samples of 5 observations, the iterated-bootstrap's Type I erkor rate is still high,
averaging about .096 in normal samples and about .139 in exponential samples. In samples of size 10, however,
Type I errors approach a = .05 in normal samples (averaging .062) and are only slightly higher in exponential
samples (averaging about .066 in the exponential data). In samples of 15 or more observations, the iterated
bootstrap's observed Type I error rate is near a = .05 in both normal and exponential samples. (The normal
approximation to the binomial suggests that the standard error of the estimate of a = .05 in samples of 1,000
should be about [(a)(1 - a)!T002 .007.)
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Conclusions
0,25 - - - - -

None of the methods yielded Type I error 0.2

rates near a = .05 in samples of 5 observations from 4 0.20 . ......
an exponential distribution, Iterated-bootstrap CIs
produced liberal Type I error rates in samples of 0 0.15
fewer than about 10 observations. Normal-theory CIs I L eth

were similarly biased in samples of fewer than about 0.10 N ....
20 observations. Ordinary percentile-method -0-- ---- ---

bootstrap CIs were seriously biased in samples of oI tm:i I lTb •ry
fewer than about 40 observations. 0.00 . . 4 -....0 20 40 00 00 100 120 140 100 180

Except in the smallest bamples (a = 5), the Sample Size

iterated-bootstrap intervals yielded Type I error rates
in Gaussian data that were nearly indistinguishable
from the Type I error rates of the normal-theory Figure 2. Empirical Type I error rate as a function of
intervals. This is a remarkable performance for a sample size for percentile-method bootstrap and normal-
nonparametric technique, given that the theory confidence intervals. The nominal protection
normal-theory Cis are optimal in Gaussian data. The level was 95%. Samples were drawn from an expo-

failure of the iterated bootstrap in the n = 5 nential distribution.
condition is disappointing but unsurprising, given the
uncertainties involved in reconstructing the sampling
distribution of the mean from so few observations. 0.26 --

An iterated bootstrap requires substantially 0.20

more computer time than the ordinary bootstrap, E 0.tn -- -

which is itself computationally demanding, When N 0 110"
and M are set to 1,000, for example, an iterated 0.10 --- - --

bootstrap requires drawing NM = 1,000,000 0

subsamples, calculating 1,001,001 values of the 0.100-- --/_-.

statistic of interest, and sorting 1,001 arrays of 1,000 Normi i
means. Some additional time is spent searching the 0(.0( -- -10 I 20 2 •30
arrays of second-order means for the adjusted Sample Size
percentile cutoffs. Calculations of this size take time,
but are not beyond the capabilities of personal
computers. A problem with 15 observations and Figure 3. Empirical Type I error rate as a function of
values of N = M = 1,000 should take about 5 mil oi sample size for iterated percentile-method bootstrap
an Intel 80386/20-based computer with a math confidence intervals. The nominal protection level was
coprocessor, which may be less time than would be 95%. Samples were drawn from normal and exponential
necessary to calculate the equivalent normal-theory distributions.
CI with pencil and paper. Larger problems would be
proportionally more time consuming. These,
however, could be handled by the percentile method, or by normal-theory techniques.

Two practical recommendations for data analysis are suggested by the results. First, ordinary percentile-
method bootstrap Cis for j may be of questionable value when Type I error rates are to be controlled at values
as low as .05. This is because, when a < .05, percentile-method Cis may perform less well than parametric Cis
in small samples and no better than parametric CIs in large samples. Second, when a data set may have been
drawn from a skewed distribution, such as the exponential, iterated-bootstrap CIs may be preferable to
parametric Cis if n is about 10 oi more. Under these conditions, iterated Cis may Yield better levels of Type
I error control than parametric Cis when the data are skewed, and approximately the same Type I error control
when the data are normal.
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